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Abstract 
 
Discharge coefficients (C

D
) are key input data in the evaluation of energy performance of naturally ventilated buildings. Such buildings are characterized by large 

openings (windows, grills, vents) for which accurate experimental data are rarely available in the literature or from manufacturers. In order to contribute with an 
experimental method for assessment and with new C

D
 values from windows typically found in Brazil and Germany, this paper describes a set of experiments assessing 

the discharge coefficient of these windows for cross-ventilation. Experiments were carried out based on the standard BS EN 13141-1:2004 set-up in a wind-tunnel 
with full-scale models. The investigated sample also comprised windows whose C

D
 values were known for the validation of the method. Results for known windows 

are in line with previous work. Results of discharge coefficients for innovative windows (not yet available in the literature) were found. The work reduces assumptions 
in natural ventilation studies, contributing to the reliability of building performance assessment. 
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Resumen 
 
Los coeficientes de descarga (C

D
) constituyen un dato de entrada clave para la evaluación del desempeño energético de edificios con ventilación natural. Estos 

edificios se caracterizan por grandes aberturas (ventanas, rejillas y respiraderos), donde los datos experimentales raramente están disponibles en la literatura o por 
parte de los fabricantes. Con el objetivo de contribuir con un método experimental para la evaluación y nuevos valores de C

D
 para ventanas de uso común en Brasil y 

Alemania, este artículo describe una serie de experimentos que evalúan el coeficiente de descarga de estas ventanas con ventilación cruzada. Se llevaron a cabo 
experimentos basados en la norma BS EN 13141-1:2004, configurando un túnel de viento con modelos a escala real. La muestra investigada presentó ventanas 
cuyos valores de C

D
 se conocieron mediante el método de validación. Los resultados para las ventanas conocidas concuerdan con trabajos previos. Se encontraron 

resultados de C
D
 para ventanas innovadoras (todavía no disponibles en la literatura). El trabajo reduce los supuestos planteados en estudios de ventilación natural, 

contribuyendo a la confiabilidad de las evaluaciones de desempeño de las edificaciones. 
 
Palabras clave: Coeficiente de descarga; ventilación natural; túnel de viento; rendimiento energético; ventanas 
 

1. Introduction 
 

Recent efforts towards one of the sustainability goals in building design require estimating the behavior of 
building techniques, materials and components in search for better performance. It is necessary to understand, 
qualify and quantify the performance of those elements and strategies. Natural ventilation is a thermal energy-
efficient alternative to achieve a comfortable and healthy environment. For that reason, it has been taken as criteria 
in worldwide known processes of certification and assessment of performance such as LEED and BREEAM. 

The concern regarding the design of a natural ventilation system is part of the modern concept of intelligent 
buildings that adapt to the environment and to requirements of their occupants (Etheridge, 2015). The process of 
designing naturally ventilated buildings can be described in four stages: (i) assess technical feasibility of natural 
ventilation, (ii) choose of a ventilation strategy (e.g. single-sided or crossflow ventilation), (iii) technical design of 
the openings (such as size and position) and (iv) investigation on the performance of the system to comply with 
required internal air motion (Etheridge, 2016). 
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Therefore, the dimensioning of openings in buildings should be studied early in the design phase. The main 
parameter to be studied for a natural ventilation design is the rate of air exchange between the external and internal 
environment. Hence, it is necessary to know the effectiveness of an opening for ventilation. This property can be 
described by the discharge coefficient CD which describes the ratio of: (a) the actual air flow and (b) the maximum 
air flow assuming there is no energy dissipation at the opening. The discharge coefficient is particular for each type 
of opening depending on factors related to the element itself (e.g. geometry) but also to external variables such as 
the angle of incidence of the wind on the facade. Due to the difficulty on estimating CD values, they are not 
available from manufacturers. 

Despite the aforementioned factors that influence CD, typical values of CD between 0.60 – 0.65 found in 
laboratory experiments for sharp-edged openings (ASHRAE, 2009); (AWBI, 2003); (Aynsley, 1999); (Linden, 1999) 
are largely adopted as a default in the current literature for different types of windows. As shown by (Heiselberg 
and Sandberg, 2006) this value does not apply for most of the windows used in real buildings and this simplification 
leads to overestimation of the air flow when used in building performance analysis.  

In the last years, research on discharge coefficient values for openings has increased uncovering various 
techniques for its characterization. CD values can be obtained by several means, such as small-scale experiments, 
full-scale experiments, numerical simulation among others and they will be discussed in the further sections.  

To contribute with these studies on the energy performance of naturally-ventilated buildings this paper 
demonstrates the validation of a method to study real-sized openings in a wind-tunnel and also brings CD values not 
found in the literature so far. The method is applied to different types of windows from Brazil and Germany and 
allows the study on the performance of large openings outside a wind-tunnel section. It is intended that the data 
obtained with this method can be used in building energy performance simulations. 
This project was developed through the partnership between the State University of Campinas (Unicamp - 
Campinas, Brazil) and HafenCity University Hamburg (HCU - Hamburg, Germany) and windows manufacturers: 
Lenderoth (Germany) and MGM (Brazil). The companies provided samples of windows and the wind-tunnel 
experiments were conducted at Unicamp. It is worth noting that the aim of the research is not providing technical 
assistance to the companies, but to validate the assessment method by testing the windows whose CD is known and 
to unveil data not yet found in the literature. This data is essential to support the reliable adoption of innovative 
windows in naturally ventilated building. 
 

2. Review on discharge coefficients 
 

Discharge coefficients are key input data in the evaluation of energy performance and indoor air quality of 
naturally ventilated buildings (Karava et al., 2004). Such buildings are characterized by large openings (windows, 
grills, vents) in contrast with sealed buildings where air exchange with the outdoor environment takes place through 
cracks and via a dedicated mechanical ventilation system. The characterization of such large openings by their 
discharge coefficients is a complex task. The discharge coefficient is not a constant value (Heiselberg and Sandberg, 
2006); (Wang et al., 2017) depending on the opening properties such as type, geometry, area (Yi et al., 2018) and 
presence of insect screens ( Chu et al., 2017). It is also dependent of external factors as the pressure difference 
induced by wind and temperature gradients, as well as of flow direction (inward/outward), angle of incidence of 
the wind, presence of turbulence and on the Reynolds Number (Aynsley, 1999); (Cruz and Viegas, 2016); 
(Flourentzou et al., 1998); (Scarpa et al., 2014); (Yi; Li et al., 2019); (Yi et al., 2019). This combination of factors 
hinders the proper evaluation of discharge coefficients for large openings. The discharge coefficient can be 
described by the orifice equation defined in (Equation 1): 
 

𝑪𝑫 =   
𝑸
𝑨

𝝆
𝟐𝜟𝑷

                              (1) 

 
 
 
 
 
 
 
 
 



Revista Ingeniería de Construcción RIC 
Vol 35 Nº2 2020     www.ricuc.cl 

ENGLSH VERSION.....................................................................................................................................................................................................................................................  

 
 

Revista Ingeniería de Construcción     Vol 35 Nº2     Agosto de 2020     www.ricuc.cl 
 

205 

Where: 
CD is the discharge coefficient (-), 
Q is the air flow (m³/s), 
A is the area of the opening (m²), 
ρ is the air density (kg/m³), 
ΔP is the difference of static pressure (Pa). 
 

Methods to evaluate the discharge coefficient of openings for wind-driven cross-ventilation have been 
developed based on empirical methods, wind-tunnel test, measurements in real buildings, laboratory tests and 
numerical simulations using Computational Fluid Dynamics (CFD) (Karava et al., 2004). The databases generated 
by these methods for commonly used opening geometries facilitate the adoption of values of discharge coefficient 
by practitioners. Such data can be found in building performance simulation manuals and codes, ventilation 
textbooks (Allard and Santamouris, 1998); (Etheridge, 2012); (Tamura and Yoshie, 2016) and scientific articles 
(Aynsley, 1999); (Belleri et al., 2014); (Chiu and Etheridge, 2007); (Chu et al., 2009); (Iqbal et al., 2015). 

One of the major databases of CD was developed by an extensive set of experiments by (Idel’chik, 1966). 
This database comprises data on coefficients of flow resistance (ζ) of elements of hydraulic (pipes and conduits), 
devices for heat exchange, ventilation (a variety of windows configuration), among others for calculation of 
hydraulic lines. An increasing flow resistance leads to a decreasing flow and consequently the discharge coefficient 
decreases as well. Thus, CD can be calculated from ζ through (Equation 2). Data for resistance coefficients of stream 
passage through orifices are obtained from calculation formulas, experimental data and theoretical formulas. 
However, while the discharge coefficient of orifices depends on velocity distribution and the Reynolds number, for 
window openings it depends on geometrical parameters and on the airflow through them (Heiselberg and 
Sandberg, 2006). 
 

𝑪𝑫 =   
𝟏
𝜻
                             (2) 

 
Despite the variety of data regarding the characterization of openings and windows configurations, there are 

many other window types used nowadays to be investigated. According to a review done by (Chen, 2009), full- 
and small-scale models have been used to validate analytical, empirical or numerical models for studying ventilation 
performance in buildings and both are subject to approximations of boundary conditions and flow geometry. The 
most popular numerical models are CFD, but there is still work to be done in order to provide reliable results to this 
method (Chen, 2009); (Karava et al., 2004). 

The geometry and details of actual windows found in buildings influence their performance for ventilation, 
therefore, the evaluation of full-sized windows in laboratory is a more suitable method (Ohba et al., 2004). Many 
window types currently used in buildings are not characterized regarding their CD. This fact forces practitioners of 
building performance simulation to use generic values found in databases in the literature. The use of these generic 
values increases the uncertainty in simulation results (Chiu and Etheridge, 2007), potentially compromising the 
adoption of natural ventilation solutions in building design. Therefore, there has been recent efforts to reduce the 
uncertainties for predicting natural ventilation in buildings (Lamberti and Gorlé, 2018), (Shirzadi et al., 2018). 
Given the popularity of CFD models for building performance simulation and that there is a clear need for empirical 
data on CD to feed databases, the present article contributes to a data base on CD values and a method for this 
characterization. 
 

3. Materials and method 
 

This section starts with a technical description of the wind-tunnel used for the measurements, followed by 
details of the window samples from Brazil and Germany. The set-up of the experiment for the measurements of 
pressure difference and air velocity is detailed in the third section. 
 
 
 
 
 
 
 



 

 
 206 

Revista Ingeniería de Construcción     Vol 35 Nº2     Agosto de 2020     www.ricuc.cl 

 

3.1 Wind-tunnel 
For avoiding scaling errors due to complex geometry of the windows, the measurements are done directly 

with real windows installed on the inlet of a wind-tunnel. The set-up is based on the standard BS EN 13141-1:2004 
(BSI, 2004) that gives recommendations on measuring volume flow rate through openings. The wind tunnel used is 
a linear open-circuit wind-tunnel of 9.03 m length with a test section of 4.80 m length (within the minimum 
distance between inlet and outlet of 0,5 m required by the standard). The cross section is reduced about six times 
from the inlet (4.20 m²) for reducing the turbulence and the flow to become laminar, resulting in a transversal area 
of 0.72 m². The upper part of the test section is adjustable to equalize the static pressure along it. Finally, the air 
passes through a diffuser of 1.25 m diameter (Figure 1) and (Figure 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. View of the wind-tunnel. On the left, the cone where the air comes in suctioned by the fan on the right. 

 

Figure 2. Components of the wind-tunnel and dimensions. 

contraction 

Test section 

diffuser 
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The windows are mounted in the inlet section of the wind tunnel (Figure 3). They are attached on a MDF 
board fitted in the inlet section. The board of 15 mm thickness is rigid enough to avoid pulsing airflow but not as 
thick as a wall to interfere on the measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Window samples 

The first step of the experiment is to validate the method using as a reference the aforementioned work of 
(Idel’chik, 1966). For this purpose, some openings whose CD are known are tested: an orifice of 40 x 40 cm (Figure 
3) and five additional windows. In total, seven windows are tested for this research. Their pictures are shown in 
(Table 1) and (Table 2) followed by: type (commercial name or opening mechanism), denomination (how they are 
referred to in this article), nominal area and brief description on operation. 

The tilted window (A) allows the control of airflow and is largely used in Brazil for ventilation of bathrooms. 
The “boca de lobo” type (B) provides permanent ventilation and cannot be adjusted. The “veneziana” types (C 
and D) are largely used for lighting and ventilation in bedrooms and also living rooms in Brazil. Both types of 
“veneziana” investigated are made of six panes: two fixed panes with no gaps for incoming air, two sliding panes 
with glass and two sliding panes with gaps for ventilation that differ the two types of “veneziana”. The “flaps” type 
(C) has adjustable devices for air inlet, while the “holes” type has small holes that allow permanent ventilation and 
it is not adjustable. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Board fixed at the inlet of the wind-tunnel with an orifice of 40 x 40 cm. 
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Table 1. Description of Brazilian windows tested in the wind-tunnel. 

Picture Details 

A 

   
(a)                             (b) 

Type 
Máximo ar 

Denomination 
(a) Tilted 45°; (b) Tilted 90° 

Nominal area 
0.16 m² 

Description 
awning window, tilted outside 

B 

 

Type 
Boca de Lobo Fixo 

Denomination 
Boca 

Nominal area 
0.16 m² 

Description 
two parallel panes, permanent open, 
gap in between 

C 

   

Type 
Veneziana Eco Flex 

Denomination 
Flaps 

Nominal area 
1.20 m² 

Description 
sliding panels with adjustable flaps 

D 

   

Type 
Veneziana 

Denomination 
Holes 

Nominal area 
1.20 m² 

Description 
sliding panels with holes 
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Table 2. Description of German windows tested in the wind-tunnel. 

Picture 
Details 

E 

 

Type 
Parallelausstellfenster 
Denomination 
PAF 
Nominal area 
1.00 m² 
Description 
adjustable parallel opening 

F 

 

Type 
Dreh-Kipp-Fenster 
Denomination 
DKF 
Nominal area 
1.00 m² 
Description 
base-hinged, tilted inside 

G 

 

Type 
Dachfenster 
Denomination 
Roof 
Nominal area 
1.00 m² 
Description 
Top-hinged, tilted outside 
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The parallel opening (E) can be adjusted to control the airflow through it. The DKF window opening 

mechanism allows its glass pane to be bottom- or side-hung. For this experiment, the base-hinged position was 
investigated. The roof window (G) is also mainly used in residential buildings for lighting and natural ventilation of 
the attic. It is usually installed in tilted roofs of residential buildings. In these experiments, it is vertically installed and 
considered in the analysis as a top-hung window. All German windows presented in this study are triple-glazed 
resulting in a complex and strong frame construction. 
 
3.3 Measurements of pressure difference and air velocity 

The pressure difference is measured by taps around the window flush to the outside face of the board (Figure 
4) and (Figure 5) and at the inside surface of the wind tunnel walls (Figure 6). Similar setup is described in the work 
of (Chu et al., 2009). (Chiu and Etheridge, 2007) suggest that the pressure taps should be placed far enough from 
the opening so that the flow through the opening does not influence the pressure, but close enough to minimize the 
effect of non-uniformity in the pressure field. Therefore, the external pressure taps are uniformly distributed 
following the same pattern in all measurements: 10 cm away from the edges of the windows and between each 
other. The distances between the edges of the board and the edges of the openings are larger than 0.3 m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Schematics of the pressure taps distribution around the opening. 

 

Figure 5. Board with a window sample and pressure taps on the left. 

PRESSURE 
TAPS 
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The internal pressure taps are installed on the surfaces of the contraction area of the wind tunnel (Figure 6). 
They are located behind the board in the mid-height of the vertical surfaces and in the mid-width of the horizontal 
surface. All taps are connected to a scanner pressure from Pressure Systems model 16TC/DTC with 64 channels 
and the data acquisition module DTC Initium. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hot-wire anemometers are uniformly distributed across the test section to measure the mean air velocity. The 
set comprises the Multi-Channel CTA System from Dantec Dynamics and a module for data acquisition from 
National Instruments model BNC-2110. 

The tests were carried out using various fan speeds, and in all cases a fully developed turbulent flow was 
obtained. As the results obtained were Reynolds independent, this paper only reports values obtained at maximum 
speed. Data are recorded with a frequency of 330 Hz. To avoid errors resulting from fluctuations, the mean data for 
each fan speed are used. 
 

4. Results and discussion 
 

The discharge coefficients are calculated using the orifice equation from measured values of pressure 
differences and calculated airflow. Estimating air flow through complicated geometries of windows is difficult and 
leads to high uncertainties (Heiselberg et al., 2001). Therefore, the nominal area of the windows is used to calculate 
the discharge coefficient instead of the geometrical opening area. This simplification also makes data input easier for 
computer simulation, and the calculated CD already takes into account the peculiarity of the geometry. The results 
are classified in two groups: the first represents the validation of the method and values are compared with data 
from (Idel’chik, 1966). The second group presents discharge coefficient values of windows not found in literature. 

For the first group (Figure 7), most of the values are slightly above the values given in the literature. The 
openings named “Holes (open)”, “Orifice” and “Flaps (open)” are compared to sharp-edged orifices. However, it 
should be clarified that the here tested openings did not have sharp edges which is a certain difference to the sharp-
edged orifices from the literature. The CD of the here tested openings is between 5% and 12% higher than the 
literature. 

The “DKF” and “Roof” windows are both compared to single top-hinged flaps. The CD of these windows are, 
respectively, 9% and 39% higher than the literature. Here, it is also expected that they present different values 
compared to those from the referred literature. The “DKF” is an intake bottom-hinged window and the geometric 
comparable opening found in (Idel’chik, 1966) is an exhaust, single top-hinged flap. Therefore, some differences 
between our results and results from literature are expected.  

The CD values for the tilted windows (45° and 90°) are underestimated. Both have single-glazed panes, but 
their geometry is complex as it has lateral hinges, which interfere on the incoming airflow. Besides, they open in a 
slightly different manner from the examples taken from Idel’chik. The pane is not exactly center-hinged, it slides 
from the upper part of the casement held by the hinges (Table 1), figures (a) and (b)). It means that its position in 
the casement is different from the one presented by Idel’chik. Considering that the pane obstructs the incoming flow 
(Hult et al., 2012), it is also expected to obtain different results from the literature. 

 

Figure 6. Schematics of the pressure taps and velocity sensors inside the wind-tunnel. 
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The results of the second group, whose CD values are not found in literature, are presented in (Figure 8). The 
“Holes (closed)” looks like a perforated plate in a corrugated surface, but its holes are facing down, conforming an 
obstacle for the incoming airflow. Therefore, it presented the lowest CD value (0.06). The “Flaps” window also has 
a corrugated surface but bigger gaps than the window “Holes”. As expected, it obtains a higher CD value (0.24). 
The passage for the airflow in the “Boca” window is similar to a rectangular opening. However, its parallel fixed 
panes cause an obstruction to the airflow, leading to a low CD value of 0.13. In short, the results for these three 
openings are expected to be lower than the first group, regarding their geometry and effective area for ventilation. 
Considering that the CD value for a sharp-edged orifice lies around 0.61, it is interesting to notice that the parallel 
opening “PAF” presents CD=0.55, a high value which indicates low levels of energy dissipation in this type of 
opening geometry. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Comparison of discharge coefficient values calculated and from the literature. 
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5. Conclusions 
 

This paper describes a method to assess the discharge coefficients in full-scale windows and present values 
previously unknown for different types of windows commonly used in Brazil and Germany. The discharge 
coefficient is a key input for building simulations to evaluate the performance of naturally ventilated buildings. 
Whenever the discharge coefficient for a specific window type is unknown the user of computer simulation software 
has to assume this important input date. Obviously, this method undermines the reliability of the analysis. This 
paper aims to help practitioners of building energy simulation to achieve more accurate results when analysing the 
ventilation performance in buildings. 

Considering the assumptions adopted in this work, the method described was validated by comparing the 
results of the experiments with data from the literature. The limitations and main conclusions of this paper are: 
 

- The experiment is limited to study the CD values of windows regarding cross-ventilation condition. It 
is known from previous work that single-sided ventilation would unveil different values; 
 
- For some of the windows tested, no comparable types of windows are found in the literature. However, 
similar constructions are found to gather an idea about the magnitude of CD. Despite the differences found 
between the results and the reference values, those are in line with the literature, considering what is known 
about the physical phenomena of fluid mechanics through openings; 
 

- Laboratory experiments are expensive but they provide accurate results. Given the popularity of 
mathematical models for simulation of fluids, it is required to verify these models with reliable data from 
experiments; 
 

- Further studies on performance of openings should be done considering the windows for single-sided 
ventilation and the usage of screens in Brazil, where the climatic conditions demand natural ventilation for 
thermal comfort of users at the same time preventing insect entry. 

 
 
 

 

Figure 8. Calculated discharge coefficients for windows not found in the literature. 
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